Full restoration of viral fitness by multiple compensatory co-mutations in the nucleoprotein of influenza A virus cytotoxic T-lymphocyte escape mutants.
نویسندگان
چکیده
Amino acid substitutions have been identified in the influenza A virus nucleoprotein that are associated with escape from recognition by virus-specific cytotoxic T lymphocytes (CTLs). One of these is the arginine-to-glycine substitution at position 384 (R384G). This substitution alone, however, is detrimental to viral fitness, which is overcome in part by the functionally compensating co-mutation E375G. Here, the effect on viral fitness of four other co-mutations associated with R384G was investigated by using plasmid-driven rescue of mutant viruses. Whilst none of these alternative co-mutations alone compensated functionally for the detrimental effect of the R384G substitution, the M239V substitution improved viral fitness of viruses containing 375G and 384R. The nucleoprotein displays unexpected flexibility to overcome functional constraints imposed by CTL epitope sequences, allowing influenza viruses to escape from specific CTLs.
منابع مشابه
Prokaryotic Expression of Influenza A virus Nucleoprotein Fused to Mycobacterial Heat Shock Protein70
Background and Aims: The novel approaches in influenza vaccination have targeted more conserved viral proteins such as nucleoprotein (NP) to provide cross protection against all serotypes of influenza A viruses. Influenza specific cytotoxic T lymphocytes (CTL) are able to lyse influenza-infected cells by recognition of NP, the major target molecule in virus for CTL responses. On the other hand,...
متن کاملVariable Fitness Impact of HIV-1 Escape Mutations to Cytotoxic T Lymphocyte (CTL) Response
Human lymphocyte antigen (HLA)-restricted CD8(+) cytotoxic T lymphocytes (CTL) target and kill HIV-infected cells expressing cognate viral epitopes. This response selects for escape mutations within CTL epitopes that can diminish viral replication fitness. Here, we assess the fitness impact of escape mutations emerging in seven CTL epitopes in the gp120 Env and p24 Gag coding regions of an indi...
متن کاملAntigenic drift in the influenza A virus (H3N2) nucleoprotein and escape from recognition by cytotoxic T lymphocytes.
Viruses exploit different strategies to escape immune surveillance, including the introduction of mutations in cytotoxic T-lymphocyte (CTL) epitopes. The sequence of these epitopes is critical for their binding to major histocompatibility complex (MHC) class I molecules and recognition by specific CTLs, both of which interactions may be lost by mutation. Sequence analysis of the nucleoprotein g...
متن کاملCTL Escape and Viral Fitness in HIV/SIV Infection
Cytotoxic T lymphocyte (CTL) responses exert a suppressive effect on HIV and simian immunodeficiency virus (SIV) replication. Under the CTL pressure, viral CTL escape mutations are frequently selected with viral fitness costs. Viruses with such CTL escape mutations often need additional viral genome mutations for recovery of viral fitness. Persistent HIV/SIV infection sometimes shows replacemen...
متن کاملEvaluating the Immunogenicity of Avian Influenza Virus Nucleoprotein
Background: Influenza viruses cause Avian Influenza (AI) is a serious infectious disease belonging to type A Orthomyxovirus. A viral RNA synthesis is due to an interaction of the nucleoprotein (NP) with the viral polymerase. In the present study, we have evaluated the immunogenicity of avian influenza virus nucleoprotein. Materials & Methods: An Influenza Virus N9H2 subtype A/Chicken I...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of general virology
دوره 86 Pt 6 شماره
صفحات -
تاریخ انتشار 2005